我国是幕墙生产大国,每年7000万平法米以上的幕墙生产量,占世界的75%。我国建筑能耗是相同气候条件发达国家建筑能耗的2到3倍,建筑节能65%主要由建筑围护系统承担。在全世界各行业各环节都在节能减排的大背景下,如何减少幕墙生产的能耗,是我们幕墙从业人员面临的一个新课题。作为一个专业公司的从业人员,结合自身的工作实践,将有关幕墙设计、施工以过程中的节能问题做一个总结及探讨。
一幕墙耗能分析及对策
玻璃幕墙是建筑维护系统中的重要组成部分,不但满足采光、通风等基本需要,还有保温、隔热的性能。由于美学的需要,建筑围护结构大量采用了幕墙系统,增加美观的同时,不可避免的增加了建筑能耗。如何在美学和节能方面达到一个相对平衡的统一,是一个在幕墙从业人员需要去面对的问题。首先我们需要从幕墙耗能的基本原因去分析问题。
(1)幕墙耗能客观因素
玻璃幕墙的传热方式一般有辐射传热、对流传热、导热方式、换气传热四种形式。幕墙从各种渠道吸收热量,使之具有热能。其中一部分由本体结构以导热方式传向室外部,而另一部分以辐射的形式从其表面向大气辐射,还有一部分借助气流以对流的方式传递给周围的空气介质。幕墙就是这样不间断的进行着热传导和热交换。幕墙的辐射传热决定于下列因素:表面温度;玻璃和框架材料及表面粗糙度、表面黑度。幕墙两侧空气介质的气流与幕墙表面间的热量传递过程称为对流传热或对流换热。室内局部热源引起的温度差会形成热对流,流动的空气介质作用在幕墙表面就会产生热交换。
导热是指热能在其结构体内额转移。是由其结构的表面接受热能,因此两侧存在稳定温度差。结构内部分子和原子因温度差而产生微观运动引起的热传导叫导热。幕墙由玻璃和框架组成,而玻璃导热系数很小,建筑的导热主要发生在框架的结构部分,导热系数大的铝合金框架呈现“热桥”(或“冷桥”)效应。由于热桥(冷桥)的存在,造成幕墙表面温度分部不均匀,同时在局部出现结露或结霜。实际考虑幕墙导热时,可按平均导热系数计算到热量。
虽然玻璃导热性差,但表面换热性强,热辐射率高,因此玻璃的传热系数大。据英国铝门窗联合会测定,单层玻璃(4-6MM)的传热系数为5.7W/(M2.℃),双层玻璃传热系数为2.8W/(M2.℃),三层为2.0W/(M2.℃)。因此玻璃的传热性能较墙体的传热大得多,玻璃的节能效果占幕墙节能的80%。幕墙框架之间结构缝隙的存在,气密性能的不同,气流穿透幕墙缝隙,产生因两侧间空气流通引起的传热,称为换气传热。在幕墙采光面积较大时,气密性能与建筑物的热损失关系甚大。
综上所述,幕墙传热是以辐射、对流、导热、换气等四种方式综合进行的。就是这些复杂的传热现象,使幕墙成为建筑物失热最多的部分。
(2)设计因素
许多开发商或设计师为追求建筑外观的新颖及采光的要求,大量采用通透式全玻幕墙;无论朝向,均使用玻璃维护结构;为了通风又大量的增加开启扇。其实玻璃无论怎么“中空隔热”,无论开启扇如何密闭保温,幕墙的节能效果都比墙体差得远,一面面敞亮的窗体,其实就是建筑物耗能张开的“血盆大口”。设计师或投资方欠缺节能设计的经验,缺少节能环保的概念是导致建筑体成为耗能大户的重要因素。
(3)材料使用因素
如前所述,幕墙的重要组成部分是玻璃和铝材。玻璃选择不当,将致使夏季透过玻璃的太阳能是其它材料墙体的数倍;所用的型材、保温隔热材料、填充材料不合理,节点做法不正确,构件间未有效设置垫片,将使得室内热能损失量大;选用的密封胶粘结效果差,胶缝施工不到位,胶条密封不严,结构变形产生裂缝,将导致冷、热风渗透情况严重,增加幕墙的换气传热。
二节能设计控制要点
(1)减少透明玻璃幕墙的使用面积
这是个根本的减低能耗的措施。玻璃幕墙使用面积的减少,在夏季可降低热透射量,使室内不至于过热,降低空调的能耗;冬季则可减少热交换热量,从而降低由于玻璃的保温性能差造成的热损失。在目前一些高层办公建筑设计中,为了追求立面的效果,减少幕墙的使用面积并非是个很好的选择。但是,我们设计师可以做些变通,如在某些次要立面上做两层外墙,内层为实体墙,外层为玻璃幕墙,从而减少透明幕墙的面积又不至于影响建筑的外立面效果。
(2)建筑物的合理布局
建筑总平面的规划布置和平面设计,应有利于夏季减少得热和充分利用通风季节和通风时段的自然通风。建筑的主要朝向宜在南偏东15°至南偏西15°范围内,不宜超出南偏东45°至南偏西30°的范围,主要房间宜避开夏季最大日射朝向。不宜将主要办公室、客房等设置在正东、正西和西北方向。不宜在建筑的正东、正西和西偏北、东偏北方向设置大面积的玻璃门窗或玻璃幕墙。必须在设计文件中注明选用的节能材料或产品的节能性能指标要求,如传热系数、可见光透光率、遮阳系数、气密性、采光系数或采光窗地面积比、窗墙面积比等。如选用的建筑材料热工性能不明确时,应以法定检测机构的检测报告或模拟计算报告提供的数据为依据。
三节能材料使用要点
选材尽量采用镀镆玻璃,Low-E玻璃、热反射玻璃、中空玻璃等玻璃处理技术。因此类玻璃的镆层能有效阻碍太阳能向室内辐射。如采用单片镀镆玻璃时,应使用在线热喷法生产的产品(膜层牢固、耐久性好)。玻璃的厚度关系到结构安全,同时也影响热能的透射量,当采用框支承幕墙时,单片玻璃厚度不应小于6毫米,夹层玻璃的单片厚度不宜小于5毫米。型材选用铝塑复合材料、"断热桥"型材等高热阻材料应用技术,此种材料的使用可有效降低热桥(冷桥)效应,减少幕墙的平局导热系数,降低幕墙的能耗。
保温隔热材料在节能方面扮演着重要角色,同时还强化了防火功能。幕墙工程宜采用岩棉、矿棉、玻璃棉等充当保温隔热材料,其优点是保温隔热性能好,导热系数只有0.044W/(m﹒K),最高使用温度达到650℃。玻璃与铝型材副框间结构性粘结必须采用中性硅酮结构密封胶,这种结构胶性能稳定(使用温度为-48-88℃、耐热性达150℃、冷变形不明显)、粘结力强。但全玻幕墙和点支承幕墙采用镀膜玻璃时,不应采用酸性硅酮结构密封胶粘结(镀膜层所含的金属元素与酸性胶反应将致使粘结破坏)。耐候密封胶应采用硅酮建筑密封胶。硅酮密封胶耐紫外线性能好,因此经久耐用、不宜老化龟裂,且与硅酮结构胶、玻璃及其它构件有良好相容性,粘结效果好。玻璃与玻璃、型材槽壁间缝处采用密度不大于0.037g/㎝3的聚乙烯泡沫棒作填充材料,此材料质量轻、保温性能好。玻璃幕墙开启窗的周边缝隙、明框幕墙玻璃与型材间隙宜采用三元乙丙橡胶、氯丁橡胶或硅橡胶密封,其中硅橡胶(耐候性好、永久变形小)质量最佳。这一点在幕墙工程中容易被人们忽视,认为橡胶条作用不大。其实不然,如果橡胶条老化,则会产生漏水、透气等严重问题,影响幕墙保温隔热效果。
四节能施工工艺控制要点
编制施工组织设计,内容要全面并有针对性,节能方面的施工措施要符合要求。对工程施工人员做好岗前培训及技术交底工作,就节能作业方面的内容进行重点交底。组织材料进场,检查主要材料、构配件的规格、型号、性能与设计文件要求是否相符,合格证、检验报告、质量保证书是否齐全。
施工阶段,金属材料、构配件连接处的柔性垫片、块设置要到位,立柱上下端与主体结构间要留缝注胶密封。结构胶施工车间温度、湿度、卫生情况应符合要求,结构胶施工要规范,施工后养护条件及养护时间要符合要求。幕墙与各层楼板、隔墙外沿间封堵岩棉(矿棉)应填充密实、厚度不应小于100毫米。所采用的保温材料如无防潮性能,则不得在受潮后使用。工程施工中经常碰到填塞保温材料后未及时有效封盖,遇雨天进水、在雨天搬运保温材料时受潮或堆场设置不合理被水浸泡等情况,使得该材料保温性能明显降低,因此施工时要采取防潮措施确保保温材料的保温性能。
开启窗扇与框间采用两道橡胶条密封,橡胶条拼接应严密(接缝处可注胶密封),窗框料转角拼接处要注胶密封。耐候胶施工前要清洁玻璃打胶面。注意不宜在夜晚、雨天打耐候胶,在接缝内打耐候胶应两对面粘结,不应三面粘结(如三面粘结,耐候胶经反复拉压后会被撕裂,从而失去密封作用),其施工宽度不宜小于2倍的施工厚度。节点作法,开启窗部位是玻璃幕墙中保温隔热的薄弱环节。由空气渗透性能检测数据可知,在同压力差下,可开启部位的空气渗透量远大于固定部位空气渗透量。因此,开启窗部位开启角度不宜大于30°,开启距离不宜大于300毫米,同时要注意在立面分格设计中开启窗设置数量不宜过多、面积不宜过大。不同金属材料(如连接件与主柱间)接触处,应合理设置绝缘垫片隔离。设置绝缘垫片可防电化腐蚀,另外间接起到了断热作用.立柱与横梁接触处设置柔性垫片,横梁两端与立柱间隙可预留1-2毫米的间隙,间隙内填胶。此做法有利于减少幕墙噪音,同时也起到了断热作用(半隐框、明框玻璃幕墙因型材外露此作用更加明显)。隐框幕墙采用挂钩式连接固定玻璃组件时,挂钩面要设置柔性垫片,明框、全玻幕墙玻璃下端与金属槽间应采用弹性垫块支承。采用垫片、垫块一方面防玻璃与挂钩硬性接触而应力集中、导致玻璃开裂,另一方面也有着断热作用。玻璃幕墙与周边构件、实体墙面洞口边缘、楼板或隔墙外沿间的缝隙处要设置保温材料,进行有效封堵设计,确保玻璃幕墙保温性能。玻璃幕墙的单元板块不应跨越主体建筑的变形缝。在主体建筑变形缝处幕墙应采用合理的构造措施,适应建筑变形的要求,有些玻璃幕墙工程因变形缝处幕墙结构设计不当,在投入使用后不到一年,因建筑主体沉降、温度伸缩的影响,此处幕墙出现拉裂、破坏,以致漏水、透气。
玻璃幕墙的三性试验要由现场见证取样送国家认可的检验机构完成。检测出的空气渗透量是衡量幕墙工程节能的主要因素之一,空气渗透性能等级应符合现行国家标准《建筑幕墙物理性能分级》GB/T15225的规定(有采暖、通风、空气调节要求时,不应低于3级)。抗风压变形性能、雨水渗漏性能与节能方面也密切相关,因此整个试验绝不能马虎、走过场。在试验室拼接的单元应与工程计算书中最不利部位的玻璃幕墙单元相同,试验中,由于安装缺陷而使试验结果未达到要求时,允许在改进安装工艺、修补缺陷后重新检测。检测报告中应叙述改进的内容,幕墙工程施工时应按改进后的安装工艺实施。由于设计或材料缺陷导致检测结果未达到要求时应停止检测,在修改设计或更换材料后重新制作试件,另行检测。
五幕墙节能新技术发展展望
玻璃幕墙节能热工设计的发展总趋向是:对于以采暖供热为主的幕墙追求达到温室效应,对于以空调制冷为主的幕墙追求达到冷房效果。为了达成这种效果,近几年来很多值得关注的幕墙节能新技术得到了发展。这主要体现在各种高性能幕墙玻璃和新颖幕墙结构以及对太阳能的主动利用等三个方面。
(1)新型玻璃技术
近几年出现的新型玻璃有阳光辐射控制玻璃、隔热玻璃、隔声玻璃、自清洁玻璃。其中阳光辐射控制玻璃通过改变玻璃的光学特性来实现对太阳能辐射的选择性屏蔽或利用来达到环保节能效果;隔热玻璃是在中空玻璃技术的基础上出现的玻璃制造新技术,通过对双层玻璃之间介质的选择来达到练好的隔热效果。
(2)新型幕墙结构--双层幕墙体系
双层幕墙的结构形式是多种多样的。最简单的就是建筑物外墙上的挂板式幕墙,主要用来遮雨、遮阳以及防风等。这也称为开放式幕墙系统。这是近年来国内外幕墙市场上出现的一种明显不同于传统幕墙的新型节能幕墙。这种幕墙又称为热通道幕墙、呼吸式幕墙、通风式幕墙等。国外也有称作主动式幕墙(ActiveCurtainwall)。这种幕墙采用双层幕墙结构体系,外层采用透过率大的单层透明玻璃幕墙,如点式幕墙等,内层一般为中空玻璃幕墙。在两层幕墙中间有一个一定宽度的空气通道,在通道的上下两端有进风和排风设施。通道的高度可以是一个或几个层高,也可以是整个建筑高度。这种幕墙的节能原理在于:冬天时关闭进风和排风口,内外两层幕墙中间的空气由于阳光的照射温度升高,像一个温室。这样等于提高了内侧幕墙的外表面温度,减少了室内热量的散失,从而可以降低建筑物采暖的运行费用。夏天内外两层幕墙之间的空气温度很高,这时打开空气通道上下两端的进排风口,由于热烟囱效应,产生气流,在通道内运动的气流带走通道内的热量,这样可以降低内侧幕墙的外表面温度,减弱了室外热量对室内的影响,从而减少了空调负荷。通过将外侧幕墙设计成封闭式,内侧幕墙设计成开启式,通过通道内上下两端进排风的调节在通道内形成负压,利用室内两则幕墙的压差和开启扇就可以在建筑物内形成气流,进行通风换气。这样,通过对太阳辐射的有效利用,就可以显著的节省能源。有分析资料显示,这种双层玻璃幕墙与传统的单层玻璃幕墙相比,采暖时可以节约能源42%~52%,制冷时可以节约能源38%~60%!
(3)目前幕墙领域成功利用太阳能的技术是太阳光变向照明技术(DaylightRedirectionSystem)和光电幕墙技术
1)太阳光变向照明技术:它取代了传统的遮阳机构,利用幕墙上的光线反射装置把室外的日光反射到室内的天花板上,再由天花板反射到工作或者生活区域,为人们提供照明。这样的光照条件比传统的以"光柱"形式进入室内的太阳光更为柔和、均匀,消除了由直接入射的强烈阳光在电脑或者电视屏幕上造成的眩光,并改善了日光在整个房间甚至建筑物的分布,可以深入到各个边角区域,减少照明费用。2)光电幕墙:光电幕墙是光伏建筑一体化(BIPV)技术在幕墙领域的成功运用。光电幕墙是一种集发电、隔音、隔热、安全、装饰功能于一身的新型建筑幕墙。它利用太阳能发电技术,把以前被当作有害因素而屏蔽掉的太阳光,转化为能被人们利用的电能。光电幕墙把太阳能发电技术集成到建筑幕墙产品中,不占用专门的土地,而且太阳能光电板也可以替代传统的玻璃等幕墙面板材料,无需重复投资。
六结束语
随着我国国民经济的快速发展,建筑业的发展也突飞猛进,建筑节能也得到相关部门的高度重视。建筑节能涉及内容广泛,工作面广,是一项系统工程。作为幕墙从业人员,能有幸参与到这样的系统工程中来,是我们的骄傲和荣幸。无论是设计还是施工人员,如果都能具备历史潮流发展观,具备能源忧患意识,具备节能环保概念,从幕墙的设计、材料使用到施工各个环节,我们加大控制力度一定能有效控制幕墙的能耗,一定可以为建筑能耗的降低做出我们应有的贡献。 |